## 6-ARYLAMINO-3-METHYL-7H-[1,2,4]TRIAZOLO[3,4-*b*][1,3,4]THIADIAZINES: NOVEL N-ARYLAMIDINE STRUCTURES

## V. A. Yanchenko<sup>1</sup>, A. M. Demchenko<sup>1</sup>, and M. O. Lozinskii<sup>2</sup>

We propose a method for obtaining derivatives of 7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine by alkylation of 4-amino-5-methyl-4H-1,2,4-triazole-3-thiol by substituted  $\alpha$ -chloroacetanilides, followed by cyclization of the intermediate by phosphorus oxychloride.

**Keywords:** 4-amino-5-methyl-4H-1,2,4-triazole-3-thiol, N<sup>1</sup>-aryl-2-(4-amino-5-methyl-4H-1,2,4-triazolyl-3-thio)acetamide, 6-arylamino-3-methyl-7H-[1,2,4]triazolo[3,4-*b*][1,3,4]thiadiazine,  $\alpha$ -chloroacetanilide, intramolecular cyclization.

Condensed derivatives of 1,2,4-triazolo[3,4-*b*][1,3,4]thiadiazines have a broad spectrum of biological action, including antibacterial [1,2], antiviral, anti-inflammatory, and other types of activity [3].

Recently interest has considerably increased in heterocyclic N-arylamidines, connected with using them as the basis for obtaining the next generation of analgesics [4]. So we have attempted to obtain N-arylamidines with a 1,2,4-triazolo[3,4-*b*][1,3,4]thiadiazine ring.

It was shown earlier that 4-amino-5-alkyl-4H-1,2,4-triazole-3-thiols react with such alkylating reagents as methyl iodide [1], chloroacetonitrile [2], chloroacetic acid [5], and substituted phenacyl bromides [5-8].



**2-4 a**  $R^1 = OEt$ ,  $R^2 = R^3 = H$ ; **b**  $R^1 = Cl$ ,  $R^2 = R^3 = H$ ; **c**  $R^1 = H$ ,  $R^2 = R^3 = Me$ 

<sup>&</sup>lt;sup>1</sup> T. G. Shevchenko Chernigov Pedagogical University, Chernigov 14038, Ukraine; e-mail: demch@cn.relc.com. <sup>2</sup> Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kiev 02094. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 4, pp. 614-616, April, 2004. Submitted May 28, 2002.

We propose a new method for obtaining derivatives of 7H-[1,2,4]triazolo[3,4-*b*][1,3,4]thiadiazine by alkylation of 4-amino-5-methyl-4H-1,2,4-triazole-3-thiol (1) with substituted  $\alpha$ -chloroacetanilides 2, followed by cyclization of the intermediate by phosphorus oxychloride.

Reaction of thiol **1** with substituted  $\alpha$ -chloroacetanilides in the presence of potassium carbonate occurs with formation of substituted N<sup>1</sup>-aryl-2-(4-amino-5-methyl-4H-1,2,4-triazolyl-3-thio)acetamides **3**. When the latter are boiled with phosphorus oxychloride, intramolecular cyclization occurs and 6-arylamino-3-methyl-7H-[1,2,4]triazolo[3,4-*b*][1,3,4]thiadiazines **4** are formed.

The structure of the synthesized compounds was confirmed by <sup>1</sup>H NMR spectroscopy data. Thus in the spectra of compounds **3a-c**, a three-proton singlet from the methyl group is found in the 2.28-2.34 ppm region, a two-proton singlet from the methylene group S–CH<sub>2</sub>CONH appears in the 3.94-4.02 ppm region, and a two-proton singlet from the N-amino group resonates in the 5.71-5.89 ppm region. When the spectrum is recorded again in the presence of small amounts of D<sub>2</sub>O, this signal disappears due to deuteron exchange. The NH-amide proton signal is observed in the range of 9.66-10.36 ppm.

A distinctive feature of the spectra of compounds **4a-c** compared with acetanilides **3a-c** is the disappearance of the two-proton singlet from the N-amino group and the signal from the acetamide proton, with the appearance of an one-proton singlet from the imino group in the position 6 of the system at 8.93-9.87 ppm.

## EXPERIMENTAL

The <sup>1</sup>H NMR spectra were taken on a Bruker-300 (300 MHz) in DMSO-d<sub>6</sub>, internal standard TMS.

N<sup>1</sup>-(4-Ethoxyphenyl)-2-(4-amino-5-methyl-4H-1,2,4-triazolyl-3-thio)acetamide (3a). Solution of 4-ethoxyanilide of chloroacetic acid (2.13 g, 10 mmol) in ethanol (20 ml) was added to solution of compound 1 (1.3 g, 10 mmol) in aqueous ethanol (40 ml) containing K<sub>2</sub>CO<sub>3</sub> (1.38 g, 10 mmol). The reaction mixture was boiled for 30 min and cooled down, then water (50-60 ml) was added. The colorless precipitate was filtered off, washed with water, and dried. Yield 2.85 g (93%); mp 226°C (ethanol). <sup>1</sup>H NMR spectrum, δ, ppm: 1.30 (3H, t, OCH<sub>2</sub>CH<sub>3</sub>); 2.28 (3H, s, CH<sub>3</sub>); 3.96 (2H, q, OCH<sub>2</sub>CH<sub>3</sub>); 4.02 (2H, s, CH<sub>2</sub>CO); 5.89 (2H, s, NH<sub>2</sub>); 6.85 and 7.43 (4H, dd, C<sub>6</sub>H<sub>4</sub>); 10.16 (1H, s, NH). Found, %: N 23.0. C<sub>13</sub>H<sub>17</sub>N<sub>5</sub>O<sub>2</sub>S. Calculated, %: N 22.8.

N<sup>1</sup>-(4-Chlorophenyl)-2-(4-amino-5-methyl-4H-1,2,4-triazolyl-3-thio)acetamide (3b) was obtained similarly to compound **3a**, from equimolar (10 mmol each) amounts of compound **1** and 4-ethoxyanilide of chloroacetic acid. Yield 2.71 g (91%); mp 211°C (ethanol). <sup>1</sup>H NMR spectrum,  $\delta$ , ppm: 2.31 (3H, s, CH<sub>3</sub>); 4.02 (2H, s, CH<sub>2</sub>CO); 5.83 (2H, s, NH<sub>2</sub>); 7.31 and 7.58 (4H, dd, C<sub>6</sub>H<sub>4</sub>); 10.36 (1H, s, NH). Found, %: N 23.2. C<sub>11</sub>H<sub>12</sub>ClN<sub>5</sub>OS. Calculated, %: N 23.5.

N<sup>1</sup>-(2,3-Dimethylphenyl)-2-(4-amino-5-methyl-4H-1,2,4-triazolyl-3-thio)acetamide (3c) was obtained similarly to compound **3a**, from equimolar (10 mmol each) amounts of compound **1** and 2,3-dimethyl- $\alpha$ -chloroacetanilide. Yield 2.45 g (84%); mp 173°C (ethanol). <sup>1</sup>H NMR spectrum, δ, ppm: 2.11 (3H, s, CH<sub>3</sub>); 2.28 (3H, s, CH<sub>3</sub>); 2.34 (3H, s, CH<sub>3</sub>); 3.94 (2H, s, CH<sub>2</sub>CO); 5.71 (2H, s, NH<sub>2</sub>); 6.92-7.31 (3H, m, C<sub>6</sub>H<sub>3</sub>); 9.66 (1H, s, NH). Found, %: N 24.2. C<sub>13</sub>H<sub>17</sub>N<sub>5</sub>OS. Calculated, %: N 24.0.

**6-(4-Ethoxyphenylamino)-3-methyl-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine Hydrochloride (4a).** Acetamide **3a** (2 g, 6.5 mmol) in phosphorus oxychloride (30 ml) was boiled for 2-3 h; the excess oxychloride was evaporated under vacuum to dryness. The oily residue was triturated with ether. The crystallized precipitate was filtered off, washed with water, and dried. Yield 1.75 g (83%); mp >250°C (ethanol–DMF). <sup>1</sup>H NMR spectrum, δ, ppm: 1.31 (3H, t, OCH<sub>2</sub><u>CH<sub>3</sub></u>); 2.46 (3H, s, CH<sub>3</sub>); 3.98 (2H, q, O<u>CH<sub>2</sub>CH<sub>3</sub></u>); 4.01 (2H, s, SCH<sub>2</sub>); 6.95 and 7.63 (4H, dd, C<sub>6</sub>H<sub>4</sub>); 9.87 (1H, s, NH). Found, %: N 21.3. C<sub>13</sub>H<sub>15</sub>N<sub>5</sub>OS·HCl. Calculated, %: N 21.5.

6-(4-Chlorophenylamino)-3-methyl-7H-[1,2,4]triazolo[3,4-*b*][1,3,4]thiadiazine Hydrochloride (4b) was obtained similarly to compound 4a, from acetamide 3b (2 g, 6.7 mmol). Yield 1.97 g (93%); mp >250°C (ethanol–DMF). <sup>1</sup>H NMR spectrum,  $\delta$ , ppm: 2.46 (3H, s, CH<sub>3</sub>); 3.88 (2H, s, SCH<sub>2</sub>); 7.27 and 7.71 (4H, dd, C<sub>6</sub>H<sub>4</sub>); 9.75 (1H, s, NH). Found, %: N 22.4. C<sub>11</sub>H<sub>10</sub>ClN<sub>5</sub>S·HCl. Calculated, %: N 22.1.

**6-(2,3-Dimethylphenylamino)-3-methyl-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine (4c).** Acetamide **3c** (2 g, 6.9 mmol) in phosphorus oxychloride (30 ml) was boiled for 2-3 h; the excess oxychloride was evaporated under vacuum to dryness and the oily residue was triturated with 10% NaOH solution (50 ml). The crystallized precipitate was filtered off, washed with water, and dried. Yield 1.38 g (74%); mp >250°C (ethanol–DMF). <sup>1</sup>H NMR spectrum, δ, ppm: 2.14 (3H, s, CH<sub>3</sub>); 2.19 (3H, s, CH<sub>3</sub>); 2.26 (3H, s, CH<sub>3</sub>); 3.92 (2H, s, SCH<sub>2</sub>); 7.05-7.27 (3H, m, C<sub>6</sub>H<sub>3</sub>); 8.93 (1H, s, NH). Found, %: N 25.5. C<sub>13</sub>H<sub>15</sub>N<sub>5</sub>S. Calculated, %: N 25.6.

## REFERENCES

- 1. M. C. Hosur, M. B. Talawar, U. V. Laddi, Rajani S. Bennur, and S. C. Bennur, *Indian J. Chem.*, **34B**, 707 (1995).
- 2. N. F. Eweiss and A. A. Bahajaj, J. Heterocycl. Chem., 24, 1173 (1987).
- 3. Zi-Yi Zhang and Xiao-Wen Sun, *Heterocycles*, **48**, 561 (1998).
- 4. A. M. Demchenko, T. A. Bukhtiarova, K. G. Nazarenko, and M. O. Lozinskii, in: *Nitrogen-Containing Heterocycles and Alkaloids* [in Russian], Iridium Press, Moscow (2001), Vol. 1, p. 291.
- 5. Jag Mohan and Vinntt Kumar, *Indian J. Chem.*, **37B**, 183 (1998).
- 6. P. Vainilavicius, R. Smicius, V. Jakubkiene, and S. Tumkevicius, *Monatsh. Chem.*, **132**, 825 (2001).
- 7. N. N. Kolos, V. D. Orlov, E. Yu. Slobodina, E. Yu. Yur'eva, S. P. Korshunov, and Ziong Van Tue, *Khim. Geterotsikl. Soedin.*, 267 (1992).
- 8. O. V. Dyablo and A. F. Pozharskii, *Khim. Geterotsikl. Soedin.*, 1155 (1997).